3 research outputs found

    Linking de novo assembly results with long DNA reads by dnaasm-link application

    Full text link
    Currently, third-generation sequencing techniques, which allow to obtain much longer DNA reads compared to the next-generation sequencing technologies, are becoming more and more popular. There are many possibilities to combine data from next-generation and third-generation sequencing. Herein, we present a new application called dnaasm-link for linking contigs, a result of \textit{de novo} assembly of second-generation sequencing data, with long DNA reads. Our tool includes an integrated module to fill gaps with a suitable fragment of appropriate long DNA read, which improves the consistency of the resulting DNA sequences. This feature is very important, in particular for complex DNA regions, as presented in the paper. Finally, our implementation outperforms other state-of-the-art tools in terms of speed and memory requirements, which may enable the usage of the presented application for organisms with a large genome, which is not possible in~existing applications. The presented application has many advantages as (i) significant memory optimization and reduction of computation time (ii) filling the gaps through the appropriate fragment of a specified long DNA read (iii) reducing number of spanned and unspanned gaps in the existing genome drafts. The application is freely available to all users under GNU Library or Lesser General Public License version 3.0 (LGPLv3). The demo application, docker image and source code are available at http://dnaasm.sourceforge.net.Comment: 16 pages, 5 figure

    De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application

    No full text
    Abstract Background Many organisms, in particular bacteria, contain repetitive DNA fragments called tandem repeats. These structures are restored by DNA assemblers by mapping paired-end tags to unitigs, estimating the distance between them and filling the gap with the specified DNA motif, which could be repeated many times. However, some of the tandem repeats are longer than the distance between the paired-end tags. Results We present a new algorithm for de novo DNA assembly, which uses the relative frequency of reads to properly restore tandem repeats. The main advantage of the presented algorithm is that long tandem repeats, which are much longer than maximum reads length and the insert size of paired-end tags can be properly restored. Moreover, repetitive DNA regions covered only by single-read sequencing data could also be restored. Other existing de novo DNA assemblers fail in such cases. The presented application is composed of several steps, including: (i) building the de Bruijn graph, (ii) correcting the de Bruijn graph, (iii) normalizing edge weights, and (iv) generating the output set of DNA sequences. We tested our approach on real data sets of bacterial organisms. Conclusions The software library, console application and web application were developed. Web application was developed in client-server architecture, where web-browser is used to communicate with end-user and algorithms are implemented in C++ and Python. The presented approach enables proper reconstruction of tandem repeats, which are longer than the insert size of paired-end tags. The application is freely available to all users under GNU Library or Lesser General Public License version 3.0 (LGPLv3)
    corecore